Examples: Prince; Princeton University; Ken Follett; Follett,Ken
1shortlisttitle datasearch history  
results search [or] ISN:0000000116839351 | 1 hits
Person
ISNI: 
0000 0001 1683 9351
Name: 
Ambrosio, L.
Ambrosio, Luigi
Dates: 
1963-
Creation class: 
Computer file
Language material
Text
Creation role: 
author
contributor
creator
editor
redactor
Related names: 
Caffarelli, Luis A. (1948-....))
Fusco, Nicola
Gigli, Nicola
Helbing, Dirk
Pallara, Diego
Piccoli, Benedetto
Rascle, Michel
Rodrigues, José Francisco
Savaré, Giuseppe
Scuola Normale Superiore Affiliation (see also from)
Tilli, Paolo
Titles: 
Calculus of Variations and Partial Differential Equations Topics on Geometrical Evolution Problems and Degree Theory
Corso introduttivo alla teoria geometrica della misura e alle superfici minime appunti dei corsi tenuti da docenti della scuola
Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions
existence theory for a new class of variational problems
Functions of bounded variation and free discontinuity problems
Gradient flows in metric spaces and in the space of probability measures
Introduction to measure theory and integration
Malattie causate da tricloroetilene
Mathematical aspects of evolving interfaces : lectures given at the CIM, CIME joint Euro-summer school held in Madeira, Funchal, Portugal, July 3-9, 2000
Modelling and optimisation of flows on networks Cetraro, Italy 2009
new functionals in the calculus of variations
On a volume constrained variational problem
On the rectifiability of defect measures arising in a micromagnetics model
Optimal transportation and applications : lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 2-8, 2001
Optimal transportation, geometry and functional inequalities
Rectifiable sets in metric and Banach spaces
Sammlung
Scripta volant, verba manent : Ennio De Giorgi matematico e filosofo
Selected Papers
Topics on analysis in metric spaces
Transport equations and multi-d hyperbolic conservation laws
Unidimensional and Evolution Methods for Optimal Transportation
Works.
Notes: 
Sources: 
VIAF BNC DNB ICCU LC NKC NTA NUKAT SUDOC WKP